Can sum1 answer this with explanation pls?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Can sum1 answer this with explanation pls?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

1 Attachment
good luck with that
see now initially the origin in O and lets shift the origin to O'. Now imagine that O wrt O' is r'. Hence now the vector coordinates in new coordinate system would be (r1 + r'), (r2 + r'), (r3 + r1), (r4 + r'). For the equation to hold a1 * (r1 + r') + a2 *(r2 + r') + a3*(r3 + r') + a4*(r4 + r') = 0 (we need to find the condition for this to hold) the equation reduces to (a1*r' + a2*r' + a3*r' + a4*r') +( a1r1 + a2r2 + a3r3 + a4r4) sum in the second paranthesis is zero (given) . Hence for eqn to hold = r'*(a1 + a2+ a3+ a4) = 0 or a1 + a2 + a3 + a4 = 0 hence proved..

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

in if and only if you have to prove both ways .. but given this proof the revers is easy as well .. hope m clear...
Ya. I'm clear nw. Thanx a lot.

Not the answer you are looking for?

Search for more explanations.

Ask your own question