Given that f(x) = x^(2n) - (p+1)x^(2) + p, where n and p are positive integers, show that (x-1) is a factor of f(x) for all values of p and... when p=4, find the value of n for which (x+2) is a factor of f(x) and factorise f(x) completely.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Given that f(x) = x^(2n) - (p+1)x^(2) + p, where n and p are positive integers, show that (x-1) is a factor of f(x) for all values of p and... when p=4, find the value of n for which (x+2) is a factor of f(x) and factorise f(x) completely.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

This might not be the smartest answer but you can show that (x-1) is a factor by simply replacing 1 instead of x. This will give you the equation 1-(p+1)+p, which is clearly zero, meaning that (x-1) is a factor.
yeah :) thanks, do u know how to find the value of n?
sorry i cant figure it out. good luck

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

okay :) thanks!

Not the answer you are looking for?

Search for more explanations.

Ask your own question