anonymous
  • anonymous
The width of a rectangle is 2 less than twice its length. If the area of the rectangle is 83 cm^2, what is the length of the diagonal? Is there a special diagonal formula?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Mertsj
  • Mertsj
|dw:1327944060314:dw|
Mertsj
  • Mertsj
Let's use x instead of l x(2x-2)=83 2x^2-2x-83=0
anonymous
  • anonymous
Ok, do i just use the quadratic formula to solve for x?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Mertsj
  • Mertsj
Yes.
anonymous
  • anonymous
Ok, thank you!
Mertsj
  • Mertsj
yw
anonymous
  • anonymous
how would i find the length of the diagonal?
Mertsj
  • Mertsj
After you know x you can find the two sides of the rectangle. Those sides are the legs of a right triangle. The diagonal is the hypotenuse so use the Pythagorean Theorem.
anonymous
  • anonymous
Ok, thanks again!!
Mertsj
  • Mertsj
yw
Mertsj
  • Mertsj
It's not a pretty answer.
anonymous
  • anonymous
yea, i can't seem to get x when i plug everything into the quad formula i get an imaginary number because of the negative under the radical
Mertsj
  • Mertsj
No.
Mertsj
  • Mertsj
Hang on
anonymous
  • anonymous
im sorry my arithmetic was incorrect you do get a positive number its radical 668
Mertsj
  • Mertsj
\[x=\frac{2\pm \sqrt{2^{2}-4(2)(-83)}}{2(2)}\]
anonymous
  • anonymous
thank you that's what i ended up with\[(2\pm \sqrt{668})/4\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.