anonymous
  • anonymous
Show that a line through (0, 0) and (c, d) is perpendicular to a line through (0, 0) and (-d, c). Slope of first line = Slope of second line =
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ash2326
  • ash2326
johny find the slope of both the lines , let them be m1 and m2 if \[m1*m2=-1\] then the lines are perpendicular
anonymous
  • anonymous
Two lines are perpendicular if the product of there slopes is -1
anonymous
  • anonymous
i already knew that

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
For the line through (0, 0) and (c, d) the slope is \( \frac {d}{c} \) and for the line through (0,0) and (-d.c) the slope is \(-\frac{c}{d} \) now if you take the product it will be -1 hence the two lines will be perpendicular.

Looking for something else?

Not the answer you are looking for? Search for more explanations.