anonymous
  • anonymous
Why does X(x+y) - y(x+y)/ x-y factor to (x+y)(x-y)/x-y
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[X(x+y) - y(x+y)/x-y = (x+y)(x-y)/x-y\]
anonymous
  • anonymous
where does the x and -y go?
Mertsj
  • Mertsj
Is X different from x?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
no
TuringTest
  • TuringTest
factoring out (x+y) in the numerator we get\[\frac{x(x+y)-y(x+y)}{x-y}=\frac{(x+y)(x-y)}{x-y}=x+y\]
anonymous
  • anonymous
but factoring out the x+y 's give you 1
TuringTest
  • TuringTest
try distributing (x+y) as a whole into (x+y)(x-y)|dw:1327954866293:dw|so it works in reverse as well
TuringTest
  • TuringTest
|dw:1327954995812:dw|
anonymous
  • anonymous
hmmm
TuringTest
  • TuringTest
still no?
anonymous
  • anonymous
Ahh see
anonymous
  • anonymous
Kinda like foil
anonymous
  • anonymous
if you backwards foil x(x+y) - y( x+y) you get (x +y) (x-y)
TuringTest
  • TuringTest
ok let \[a=(x+y)\]so we have\[xa-ya=(x-y)a=(x-y)(x+y)\]
TuringTest
  • TuringTest
yes factoring is like distributing backwards here it's not really foiling because we don't multiply out the two terms, we treat one as a single variable. Like I said, let\[a=(x+y)\]then it's like distribution\[(x+y)(x-y)=a(x-y)=ax-ay=x(x+y)-y(x+y)\]we just don't multiply it out, and we run in reverse\[x(x+y)-y(x+y)=ax-ay=a(x-y)=(x+y)(x-y)\]
anonymous
  • anonymous
thanks for the help :D
TuringTest
  • TuringTest
welcome :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.