anonymous
  • anonymous
Evaluate surface area of the curve y=sqrt(x+1) from x=1 to x=5 when it is revolved around the x axis
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
xkehaulanix
  • xkehaulanix
Oh boy, surface area. Okay, start with the general equation for surface area: \[SA = \int\limits_{a}^{b}2\pi f(x)\sqrt{1+(f \prime(x))^2}dx\]f(x) is given to you as \[y = \sqrt{x + 1}\]with limits a = 1 and b = 5. The next part of this equation comes from the equation for distance. Take the first derivative of your f(x), square it, add 1, and take the square root. \[f(x) = \sqrt{x + 1}\]\[f \prime(x) = 1/(2 \sqrt{x+1})\]\[\sqrt{1 + (1/(2 \sqrt{x+1}))^2}\]Yeah, this is looks wonderful. It simplifies well though.\[\sqrt{1 + 1/(4 + 4x)}\]\[\sqrt{(4x+5)/(4(x+1))}\]\[1/2\sqrt{(4x + 5)/(x+1)}\]Much better.....kinda. From here you plug this in and simplify more before taking the integral. Do you want the steps for those too?

Looking for something else?

Not the answer you are looking for? Search for more explanations.