anonymous
  • anonymous
if du/dx=2x+6 what does du equal? this is using substitution for solving an indefinite integral.
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
i guess \[du=(2x+6)dx\] what is the actual problem?
anonymous
  • anonymous
du = (2x + 6)dx You can now integrate both sides to solve for u
anonymous
  • anonymous
\[u = x^2 + 6x + C\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[\int\limits_{?}^{?} x+3/(x^2+6x)^2 dx\]
anonymous
  • anonymous
oh ok \[u=x^2+6x\] \[du= (2x+6)dx\] \[\frac{1}{2}du=(x+3)dx\] and then you get \[\frac{1}{2}\int \frac{1}{u}du\]
anonymous
  • anonymous
a set up for a u - sub. then anti derivative is \[\frac{1}{2}\ln(u)\] , replace u by \[x^2+6x\] and you are done
anonymous
  • anonymous
omg thank you sooooo much!!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.