http://screensnapr.com/v/9vFRmW.png

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

http://screensnapr.com/v/9vFRmW.png

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1327977940554:dw| For each of the two triangles, the angle (96 and 84 deg.) are known, as well as the adjacents sides. You can use cosine rule, c^2=a^2+b^2-2ab cos(C) to find the length of the guy-wires.
Sorry, a and b in the cosine rule refer to the length of adjacent sides of each angle, not the guy-wires.
So just the same problem basically for both sides, just different angles?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

a^2=75^2+100^2-2(75)(100)cos 96
b62=75^2+100^2-2(75)(100)cos84
Yep, Mertsj got it all sorted out for you!
a=131.12

Not the answer you are looking for?

Search for more explanations.

Ask your own question