anonymous
  • anonymous
I have a tricky one for you guys. See problem #1 in the attached PDF file.
Physics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
anonymous
  • anonymous
It's a review of rigid body kinematics, but I'm having trouble getting the correct rotation matrix.
anonymous
  • anonymous
Problem #1 is really tricky, do you have the solution?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Yes. I figured it out. We can track the motion of the box from the origin. That is to say that body i,j, and k are aligned with ground I, J, and K. First, make a rotation about body k by angle \(\psi\). \[R_z(\psi) = \left[\begin{matrix}\cos(\psi) & -\sin(\psi) &0 \\ \sin(\psi) & \cos(\psi) & 0 \\ 0 & 0 & 1\end{matrix}\right]\] Then, make a rotation about body j by angle \(\theta\). \[R_y(\theta) = \left[\begin{matrix}\cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta)\end{matrix}\right]\] We can multiply both rotation matrix together. Let's call the new matrix R\[R = \left[\begin{matrix}a_1 & b_1 & c_1\\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{matrix}\right]\] The components of the body frame in the ground frame can be found as\[\hat i = a_1 \hat I + a_2 \hat J + a_3 \hat K\]\[\hat j = b_1 \hat I + b_2 \hat J + b_3 \hat K\]\[\hat k = c_1 \hat I + c_2 \hat J + c_3 \hat K\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.