• anonymous
can anyone help me figure out a new equation for an ellipse whose length and width are doubled and the original equation is x^2/50+y^2/20=1
  • schrodinger
See more answers at
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this
and thousands of other questions

  • anonymous
Find out a & b. Multiply them with 2. & put'em in the general equation of the ellipse. :)
  • anonymous
KDroid is correct, but I'll give you a bit more: You want to take the square root of the numbers in the denominator of the 'x' and 'y' slots to get 'a' and 'b' (so 50 and 20 respectively; square root to get a=7.07 and b =4.46). That will give you the points on the x-axis and y-axis of which your ellipse crosses. Double this number and re-square it to get it back in the form you started in. So, \[\sqrt{50} = 7.07\] \[7.0*2 = 14.1421\] \[14.1421^{2} = 200\] 200 is the new value under your 'x'. Do the same for the 'y' and you should get 80.

Looking for something else?

Not the answer you are looking for? Search for more explanations.