• anonymous
Consider the following linear equation: 1/8(z+3)=4/5(z+1/8) Solve the above linear equation. Simplify your answer.
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • schrodinger
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
I've gotcha! ..just let me type it all out.
  • dumbcow
if you want to get rid of the fractions, you can multiply the equation by 40 -> 5(z+3) = 32(z+ 1/8)
  • anonymous
Okay, I hope you can read this: First, simplify the equations: \[1/8(z) + 3/8 = 4/5(z) + 4/40\] Next, collect like-terms (z's) on one side of the equation: \[1/8(z) - 4/5(z) = 4/40 - 3/8\] Multiply through to get a common denominator (of 40): \[5/40(z) - 32/40(z) = 4/40 - 15/40\] Simplify each side by subtracting the like terms on each side: \[-27/40z = -11/40\] Divide the -27/40 into -11/40, or multiply by the reciprocal: \[z = (-11/40) * (40/-27)\] ..and there you have it. z = -11/-27 or just 11/27.

Looking for something else?

Not the answer you are looking for? Search for more explanations.