Ok.\[f(x)=\left(\begin{matrix}ke ^{-2x} \\ 0\end{matrix}\right)\] \[x \ge 0\]otherwise, Find k

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Ok.\[f(x)=\left(\begin{matrix}ke ^{-2x} \\ 0\end{matrix}\right)\] \[x \ge 0\]otherwise, Find k

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Is this a probability density function?
Yes
Is it piece wise functions?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Just probability density.
integrate it between 0 to infinity, it's value is 1, you'll be able to find k
I'm not sure how to integrate it from infinity... that's the problem I'm having.
we know for a probability density function \[\int_{-\infty}^{\infty} f(x)=1\] now f(x)=ke^-2x for x\(\ge\)0 \[\int_{0}^{\infty} f(x)=1\] so our integral becomes now f(x)=ke^-2x now \[\int_{0}^{\infty} ke^{-2x}=1\] integral of e^x=e^x so \[(\frac{-1}{2}*k*e^{-2x})=1\] now insert the limits e^(-2x) as x--->\(\infty\) is 0 so we get \[(0-(-1/2*k*e^0)=1\] or \[k/2=1\] or \[\large{k=2}\]
did you get it order?
Yes... Just one question, How did (0-(-1/2*k*e^0)=1 become 2?
see we have, (0-(-1/2*k*e^0)=1 this is an equation now e^0=1 so (0+1/2k*1)=1 so k/2=1 or k=2
Ah OK. I just figured that out :) Thanks!
A computer ink cartridge has a life of X hours. The variable X is modelled by the probability density function \[f(x)=\left(\begin{matrix}kx^{-2} \\ 0\end{matrix}\right) \]\[x \ge 0 -otherwise -\] (a) Find K

Not the answer you are looking for?

Search for more explanations.

Ask your own question