anonymous
  • anonymous
How do I set up the integral to find the volume of the disc bounded by the circle x^2+y^2 = 1 rotated about the line y = 2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
you mean the volume of a torus?
anonymous
  • anonymous
yes
amistre64
  • amistre64
do you know an answer yet to check with? perhaps say 16pi?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
|dw:1328034607713:dw|
amistre64
  • amistre64
if we do a washer type method, and if im right ... big if!! pi (R^2 - r^2) gives the area for any given washer cross section of this from angles 0 to pi/2 R = 2+cos(t) r= 2-cos(t) since that would be the top half we would have to double that result \[2*(pi\int_{0}^{pi/2}((2+cos(t))^2-(2-cos(t))^2)dt\]
amistre64
  • amistre64
it makes sense in my head, but other than that .... im sure theres other ways to determine it :)
amistre64
  • amistre64
that should simplify to: integral 8cos(t), which goes up to 8sin(t) 8sin(pi/2) - 8sin(0) = 8; *pi = 8pi doubles to 16pi
amistre64
  • amistre64
http://tutorial.math.lamar.edu/Classes/CalcI/MoreVolume.aspx might be a better way to go about it; near the bottom

Looking for something else?

Not the answer you are looking for? Search for more explanations.