anonymous
  • anonymous
show that for all integers "m" and "n", with "m" is not equal to positive or negative "n", the integral of cos(m*x)*cos(n*x) dx in the interval (pi,-pi) equals zero.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\int\limits \cos(mx) \cos(nx) dx\] = \[1/2\int\limits [\cos{x (m-n)}+\cos{x (m+n)}] dx \] = \[1/2\int\limits [\cos(m x-n x)+\cos(m x+n x)] dx\] = \[1/2 \int\limits \cos(m x-n x) dx+1/2 \int\limits \cos(m x+n x) dx\] = \[ 1/2 \int\limits \cos(x (m-n)) dx+1/2 \int\limits \cos(m x+n x) dx\] For the integrand cos(x (m-n)), substitute u = x (m-n) and du = m-n dx: = \[ 1/[2 (m-n)] \int\limits \cos(u) du+1/2 \int\limits \cos(m x+n x) dx\] = \[ \sin(u)/[2 (m-n)]+1/2 \int\limits \cos(m x+n x) dx\] = \[ \sin(u)/[2 (m-n)]+1/2 \int\limits \cos(x (m+n)) dx\] For the integrand cos(x (m+n)), substitute s = x (m+n) and ds = m+n dx: = \[ 1/[2 (m+n)] \int\limits \cos(s) ds+\sin(u)/[2 (m-n)]\] = sin(s)/[2 (m+n)]+sin(u)/[2 (m-n)]+constant Substitute back for s = x (m+n) and u = x (m-n) to get the integral as : (m sin(m x) cos(n x)-n cos(m x) sin(n x))/(m^2-n^2)+constant Now you can work on with the intervals part.

Looking for something else?

Not the answer you are looking for? Search for more explanations.