• anonymous
The population (in thousands) of a colony of bacteria t minutes after the introduction of a toxin is given by the function P(t)= (piecewise) t^2+1 if 0(greater than or equal to)t<5 -8t+66 if t is greater than or equal to 5 a. When does the colony die out? b. Show that at some time between t=2 and t=7, the population is 9,000 The topic of the section is continuity. I just don't get how to do it properly for a I set the second equation to 0 and solved for t and got 8.25 seconds. Is that the right way to do it? I cant figure out part b though
Mathematics
• Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Looking for something else?

Not the answer you are looking for? Search for more explanations.