anonymous
  • anonymous
Find the center and the radius. x^2+y^2+4x-12=0
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
shoot - i just lost all my working! centre = (-2,0) and radius = 4
anonymous
  • anonymous
do you need the method JT?
anonymous
  • anonymous
Yeah sorry I just dont know where to start

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ok - the general equation of a circle is: (x - a)^2 + (y - b)^2 = r^2 where (a,b) is the centre and r is the radius of a circle so we need to arrange your equation to the above form x^2+y^2+4x-12=0 bring terms in x ,y and numbers together x^2 + 4x + y^2 - 12 = 0 complete the square on x^2 + 4x: x^2 + 4x = (x + 2)^2 - 4 - replace x^2 + 4x by (x + 2)^2 - 4 (x + 2)^2 - 4 + y^2 - 12 = 0 (x + 2)^2 + y^2 = 16 now put this in general form: (x + 2)^2 +( y - 0)^2 = 16 compare with general form: (x - a)^2 + (y - b)^2 = r^2 x = -2, y = 0 and r^2 = 16 so r = 4 centre is (-2, 0) and radius = 4
anonymous
  • anonymous
Okay thank you! Do you always complete the square when given an equation likte that?
anonymous
  • anonymous
its one way of solving it - the other way is to use a set of formulae - i prefer the completing the square method.

Looking for something else?

Not the answer you are looking for? Search for more explanations.