Identify the vertex, axis of symmetry, and min/max value of each. f(x) = -2x^2 - 36x -164 f(x) = -7x^2 + 14x - 15 f(x) = -6x^2 + 12x - 4 f(x) = 10x^2 - 100x +240

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Identify the vertex, axis of symmetry, and min/max value of each. f(x) = -2x^2 - 36x -164 f(x) = -7x^2 + 14x - 15 f(x) = -6x^2 + 12x - 4 f(x) = 10x^2 - 100x +240

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

each of these works the same way. find \[-\frac{b}{2a}\] and that will be the first coordinate of the vertex. second is what you get by substitution
\[f(x) = -2x^2 - 36x -164 \] \[-\frac{b}{2a}=-\frac{36}{4}=-9\] \[f(9)=-2\] range is \[(-\infty, -2]\]
\[f(x) = -7x^2 + 14x - 15\] \[-\frac{b}{2a}=\frac{14}{2\times 7}=1\] \[f(1)=-8\] vertex is \[(1,-8)\] range is \[(-\infty, -8]\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

What do you mean by 'range'?

Not the answer you are looking for?

Search for more explanations.

Ask your own question