How can I simplify this series? 2^0 + 2^1 + 2^2 + 2^3 + ........ + 2^100

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

How can I simplify this series? 2^0 + 2^1 + 2^2 + 2^3 + ........ + 2^100

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Do you know geometric progression?
yea u can just plug in your values in the summation formula of geometric sequence
Or you could derive it on your own ;)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Lol
Akshay, this problem is too easy for you, go and solve the the one I posted :P
hehe
The answer for this one is \( 2^{101}-1 \)
\[2^{101}-1 \over (2-1)\] to be precise using the formula
Can you show me the formula please?
I do not know geometric progression. I'm sorry. I do really like FoolForMath's picture. It's funny.

Not the answer you are looking for?

Search for more explanations.

Ask your own question