anonymous
  • anonymous
show geometrically why the integral of sqrt(2-x^2) in the interval (0,1) is equal to (pi/4)+(1/2)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
http://www.wolframalpha.com/input/?_=1328164066711&i=+integral+of+sqrt(2-x%5e2)&fp=1&incTime=true
dumbcow
  • dumbcow
the function represents the upper half of a circle of radius sqrt2 at x=1, y =1, from unit circle we know that the angle is pi/4: tan pi/4 = y/x = 1 The area from 0 to 1 is the combined area of a 1/8 sector of circle plus a triangle of length and height of 1. |dw:1328166468103:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.