anonymous
  • anonymous
Without using L'Hospital's Rule, how does one show that lim -> infinity of (X^2)/e^x = 0?
MIT 18.01 Single Variable Calculus (OCW)
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
That's supposed to read X-> infinity ...
nenadmatematika
  • nenadmatematika
function e^x grows much faster than x^2 when x goes to infinity, so when x^2 reaches some big number, we can consider that e^x ''reaches'' infinity....so if you put big number over infinity the result iz zero, actually limit is zero....also if you would like to know...\[\ln x <
cristiann
  • cristiann
Consider the limit lim_{n→∞}((n²)/(eⁿ)); let b=e-1>0 C_{n}^{k} is a notation for "n choose k" -- the binomial coefficient from Newton binomial 0<((n²)/(eⁿ))=((n²)/((b+1)ⁿ))=((n²)/(∑_{k=0}ⁿC_{n}^{k}b^{k}))<((n²)/(C_{n}³b³))=((3!n²)/(n(n-1)(n-2)b³))→0 as n→∞ and use for example "The Squeeze Theorem" to get lim_{n→∞}((n²)/(eⁿ))=0 This line of reasoning works for any n^{α} with appropriate modifications.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

cristiann
  • cristiann
just a file to see the writing better
1 Attachment

Looking for something else?

Not the answer you are looking for? Search for more explanations.