horizontal shift of: -240sin(4θ-360) and 4cos(1/2θ-15)-2.5 Please explain how you got those answers! Thanks :)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

horizontal shift of: -240sin(4θ-360) and 4cos(1/2θ-15)-2.5 Please explain how you got those answers! Thanks :)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

If original is y= f(x) and final is, \[y-k = a \cdot f(x-h)\]or y = a⋅f(x−h) + k h is horizontal shift k is vertical shift a is stretch/ squish
So in this case, -360 would be considered the horizontal shift, and it doesn't consist of a vertical shift?
+360 is horizontal shift from -240sin(4θ)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Why is it positive?
if f(x) becomes f(x-h) because now f(1) is moved to f(1+h) ... anyways if θ is in degrees it does not matter because -240sin(4θ-360) will look exactly like -240sin(4θ)
So basically what ever h's sign is in the brackets, should be reversed? ex: -3cos(θ-15) would be positive 15?
yep
Ahhh! Okay Thanks a lot!

Not the answer you are looking for?

Search for more explanations.

Ask your own question