It is believed that the rate of at see cricket's chirping is related to temperature. Studies have shown that the activation energy for the cricket's chirping is 22kj/mol and that the cricket chirps 10 times per minute at 27 degrees Celcius. How often does the cricket chirp at 42 degrees celcius?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

It is believed that the rate of at see cricket's chirping is related to temperature. Studies have shown that the activation energy for the cricket's chirping is 22kj/mol and that the cricket chirps 10 times per minute at 27 degrees Celcius. How often does the cricket chirp at 42 degrees celcius?

Chemistry
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Here we need to use an equation which (I believe) is derived from the Arrhenius equation... \[\ln(\frac{k_2}{k_1})=\frac{-E_a}{R}(\frac{1}{T_2}-\frac{1}{T_1})\]\[\ln(\frac{k_2}{10s^{-1}})=\frac{-22kJ*mol^{-1}}{8.314J*K^{-1}*mol^{-1}}(\frac{1}{315K}-\frac{1}{300K})\]\[\ln(\frac{k_2}{10s^{-1}})=-2.6461*K^{-1}(-1.5873*10^{-4})\]\[\ln(\frac{k_2}{10s^{-1}})=4.2002\]\[\frac{k_2}{10s^{-1}}=e^{4.2002}\]\[\frac{k_2}{10s^{-1}}=1.0004\]\[k_2=10.004s^{-1}\]Since, we're really only justified in keeping 2 SFs...\[k_2=10.004s^{-1}\approx 10s^{-1}\]
Oh! I see the mistake I made here. Let me fix that.
The final units just need to be in inverse minutes, not inverse seconds: \[k_2=10mi n^ {-1}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question