anonymous
  • anonymous
A farmer will make a rectangular pen with 100 feet of fence using part of his barn for one side of the pen. What is the largest area he can enclose?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
100/4=25*25=625
anonymous
  • anonymous
I know the answer, but i need the work. Answer is 1250
anonymous
  • anonymous
is that the actual answer?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
The perimeter: 2(x + y) = 100 + x The area: x * y = area 2x + 2y = 100 + x 2y = 100 + x - 2x y = 50 - 0.5x x * (50 - 0.5x) = area -0,5x^2 + 50x = area First derivative: -x + 50 Solve for x: x = 50 So y must be: 2x + 2y = 100 + x 2 * 50 + 2 * y = 100 + 50 100 + 2y = 150 2y = 50 y = 25 Test drive: x * y = 50 * 25 = 1250
anonymous
  • anonymous
The first derivative is used for finding maximum point(s).
anonymous
  • anonymous
Thanks :D

Looking for something else?

Not the answer you are looking for? Search for more explanations.