anonymous
  • anonymous
Help please: Use the distance formula to show that the triangle ABC, with vertices A(-1,-2),B(3,2), and C(1,4), is a right triangle. Explain your reasoning.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
AB(4; 4) BC(-2; 2) AC(2; 6) Length of AB = sqrt(4^2 + 4^2) = sqrt(32) = 4sqrt(2) Length of BC = sqrt(-2^2 + 2^2) = sqrt(8) = 2sqrt(2) Length of AC = sqrt(2^2 + 6^2) = sqrt(40) = 2sqrt(10) According to pythagoras a^2 + b^2 = c^2 if it's a right triangle. 4sqrt(2) + 2sqrt(2) = 2sqrt(10) 32 + 8 = 40 And that is true. Win.
anonymous
  • anonymous
Thank you. So basically, you find the distance between AB,BC, and AC. Then you plug it in the a2+b2=c2 formula?
anonymous
  • anonymous
Since you can only use the distances I can't really see another way. So yeah, 'a^2 + b^2 = c^2 must be true for right triangles' is basically all you need to explain imo : )

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
okay, thanks.

Looking for something else?

Not the answer you are looking for? Search for more explanations.