• anonymous
Determine series convergence or divergence: a) Sum from 0 to inifinity (ne^(-n^2))
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • katieb
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
\[f(x)=n \times e ^{-n ^{2}}\] is this the function ?
  • anonymous
\[limt \frac{n}{e ^{n2}}\] if we sub value of n then we got \[\frac{\infty}{\infty}\] drive The numerator, and denominator \[\lim \frac{1}{2n \times e^{n^{2}}}\] if we sub infinity \[\frac{1}{\infty} = zero\] also its looks like true by the plot Wish I'm right ... you are welcome.
  • cristiann
Use a comparison test; for example compare the series with 1/n^2 (which is a convergent series) since (((1/(n²)))/((n/(e^{n²}))))=((e^{n²})/(n³))→∞ you get that eventually (ie beginning with a certain index) 1/n^2 dominates your general term; since both are positive and the bigger one converges, it follows that your series is also convergent The above argument (waleed kha) doesn't work: if the general term goes to 0, then then anything may happen.... for example the general term 1/n goes to 0 but the series diverges

Looking for something else?

Not the answer you are looking for? Search for more explanations.