anonymous
  • anonymous
The random variable, X, has the probability density function \[f(x)=\left(\begin{matrix}kx^3 \\ 0\end{matrix}\right)\]\[0\le x \le 2 - {otherwise} - \] Find the probability that an observation lies withing one standard deviation of the mean.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
k=1/4 btw
anonymous
  • anonymous
can we use Chernoff's inequality?
anonymous
  • anonymous
What's that?... I don't know it by name..

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
http://en.wikipedia.org/wiki/Chernoff%27s_inequality
cristiann
  • cristiann
Probability 0.7
1 Attachment
anonymous
  • anonymous
Let me just read it through and see if I understand everything, but it's the right answer.
anonymous
  • anonymous
One question, what does M stand for?
anonymous
  • anonymous
mean?
cristiann
  • cristiann
Yes ... mean ... average ...
anonymous
  • anonymous
Then I understand it. Thank you!
cristiann
  • cristiann
E(X) in fact ... I've used another notation ...sorry...
cristiann
  • cristiann
You are welcome ... :)
anonymous
  • anonymous
That's fine. I know it as \[\mu\] aswell
amistre64
  • amistre64
f(x)={{kx^3}\choose{0}} might be an easier way to type that up \[f(x)={ {kx^3}\choose{0}}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.