anonymous
  • anonymous
A line 10cm long has a direction specified by the polar angle 100`. If one end is at (7,160`) find the polar coordinates of the other end.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Hi .. how are you ? hop you are fine .. lets Trying your Q. first of all we have to understand you Q. you have line that (10,100') .. first point of it (7,160') and you need to find the other point. That is mean ... you have to find draw (10,100) from point (7,160') then the end will be easy to calculate . The figure below showing that . |dw:1328168585173:dw| to find x1 , the angle of the 7 length lineis 160 degree so the rest of the angle = 20 degree on the other side: \[\huge{x _{1} = -7\cos 20=-6.577} \] \[\huge {x _{2}= -10 \cos80 = - 1.736 }\] x= x1+x2=3.313 unit \[\huge {y_{1}=7 \sin 20= 2.394 }\] \[\huge {y_{2}=10 \sin 80 = 9.848}\] Y= y1+y2 = 12.242 unit \[\huge {r=\sqrt{x^{2}+y^{2}}}\] \[\huge {r=\sqrt{8.313^{2}+12.242^{2}}}=14.798\] \[\huge {\theta = 180 - \tan^{-1} \frac{y}{x}}=180-55.82=124.178\] (r,theta) \[\huge \text { (14.798,124.178')}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.