anonymous
  • anonymous
can any one give me interpretation of delta function potential
Physics
chestercat
  • chestercat
See more answers at brainly.com
chestercat
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
To be correct, the delta "function" is a (irregular) distribution (not a function), so from the physical point of view it only makes sense to talk about it when integrating over it. You can imagine it as a the limit of a Gaussian, where the width approaches zero while the integral stays constant. (Hence the height gets infinity.) If it's (delta(x-x')) together with any other function f(x) inside of an integral, the integral just leads to the value of the function at the point x=x', i.e. f(x'). Don't know if this really helps, but in principle I would say it's more like a mathematical trick (or property) then a physical interpretation of it.

Looking for something else?

Not the answer you are looking for? Search for more explanations.