• anonymous
can any one give me interpretation of delta function potential
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • katieb
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
To be correct, the delta "function" is a (irregular) distribution (not a function), so from the physical point of view it only makes sense to talk about it when integrating over it. You can imagine it as a the limit of a Gaussian, where the width approaches zero while the integral stays constant. (Hence the height gets infinity.) If it's (delta(x-x')) together with any other function f(x) inside of an integral, the integral just leads to the value of the function at the point x=x', i.e. f(x'). Don't know if this really helps, but in principle I would say it's more like a mathematical trick (or property) then a physical interpretation of it.

Looking for something else?

Not the answer you are looking for? Search for more explanations.