A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing


  • 4 years ago

(Exact Differential Equation) In attempting this question: http://f.imgtmp.com/JYceq.jpg , I did this: http://f.imgtmp.com/New69.jpg . I feel I should be right but Wolfram Alpha gives an entirely different answer (which doesn't seem compatible as an answer for the question): http://www.wolframalpha.com/input/?i=(x^3+%2B+4y)+dx+%2B+(4x+%2B+4y)+dy+%3D+0. Could someone please help me find what's wrong?

  • This Question is Closed
  1. Mr.Math
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    I couldn't read your writing, but here how I would it. \[(x^3 + 4y) dx + (4x + 4y) dy = 0\] This differential equation is obviously exact, so there exists a solution \(f(x,y)=c\) such that \(f_x=x^3+4y\) and \(f_y=4x+4y\). Then, by integrating the first equation with respect to x we get \(\large f(x,y)=\frac{x^4}{4}+4xy+g(y)\) (*) Now, differentiating (*) with respect to y gives: \[f_y=4x+g'(y)=4x+4y \implies g'(y)=4y \implies g(y)=2y^2+k\] Hence the solution is\(\frac{x^4}{4}+4xy+2y^2=c.\) This solution is good enough for me, but if you want to find a similar form to what wolfarm is giving then you can solve this last equation as by using the quadratic formula in y.

  2. cristiann
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Wolfram solution also solves for the implicit function problem, but this is not part of the differential equation problem...

  3. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...


  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.