Can anyone help me prove proerties of vectors?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Can anyone help me prove proerties of vectors?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

prove that u+v is a vector in R^n
u=(u1,...,un), v=(v1,...vn)=>u+v=(u1+v1,...un+vn) since each vector has real coordinates and the sum of two real numbers is a real number (closure property) it follows u+v in Rn
Hey that was awesome. LOL stick around I have 10 properties to prove and I suck at proving

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

umm I have another one lol
u+v=v+u and we r disussing vectors in r^n
True, because of the commutativity property of real numbers (following the previous line of reasoning)
ya but i have to prove it and like how wld i do that
u=(u1,...,un), v=(v1,...vn)=>u+v=(u1+v1,...un+vn) v+u=(v1+u1,...vn+un) for each k, uk+vk=vk+uk (in real numbers) because of commutativity So u+v=v+u
Thanks :D
welcome :)
I need help with another one but maaybe i will do it another post so i can give u more medals :D
Not that interested in medals ... :) but you should try them for yourself... I should show you how to fish, not to fish in your place ...:)
heehe
lol i am figuring this one out on my own :D
:) maybe you should put the question in the form "is this correct?"
hehe ya i will do that for the next one :D
I did like 4 on my own :D lol
but now I am stuck Prove that cu is a vector in R^n
u=(u1,...,un), c in R, then cu=(cu1,...,cun), vector because the multiplication of two real numbers is a real number

Not the answer you are looking for?

Search for more explanations.

Ask your own question