anonymous
  • anonymous
let f(x)= 1/x+9 what is f^-1(x)=?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
nenadmatematika
  • nenadmatematika
x+9
Mertsj
  • Mertsj
\[x=\frac{1}{y+9}\]
Mertsj
  • Mertsj
\[x(y+9)=1\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

nenadmatematika
  • nenadmatematika
oh you're true Mertsj...it's the inverse function :D
Mertsj
  • Mertsj
\[y+9=\frac{1}{x}\]
Mertsj
  • Mertsj
\[y=\frac{1}{x}-9\]
Mertsj
  • Mertsj
\[y=\frac{1-9x}{x}\]
anonymous
  • anonymous
thanks guys!
cristiann
  • cristiann
This question is either tricky or just plain sloppy ... First: it's not clear the form of the function \[f_{1}(x)=\frac{1}x+9\] or \[f_{2}(x)=\frac{1}{x+9}\] Then: no matter which function, you still have problems, because of the domain and codomain of the functions: For f1: \[x \neq 0, y \neq 9\] so only if the function is in the form \[f_{1}:\mathbb{R}^{*}\rightarrow \mathbb{R} \setminus (9) \] it is bijective (one-to-one/injective and onto/surjective) For the second function, you have the same type of problem, with \[x \neq -9, y \neq 0\] Only now you may talk about the expression of the inverse.

Looking for something else?

Not the answer you are looking for? Search for more explanations.