• anonymous
y'=(1+y^2)/(1+x^2) y(2)=3 book answer y=(x+c)/(1-cx) how is this possible with out trig substitution
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • schrodinger
I got my questions answered at in under 10 minutes. Go to now for free help!
  • JamesJ
It's not. And the answer should remind you of this trig identity that will be very useful: \[ \tan(a+b) = \frac{ \tan a + \tan b}{1 - \tan a . \tan b} \]
  • cristiann
y′=((1+y²)/(1+x²)), y(0)=3 Equation with separable variables: ((y′)/(1+y²))=(1/(1+x²))⇒arctan y=arctan x+C arctan y(0)=arctan0+C⇒arctan3=C arctan y=arctan x+arctan3 [this is the solution in implicit form... up to here the differential equation problem should be considered solved] To solve the implicit function problem, use the formula JamesJ gave you: ⇒y(x)=tan(arctan x+arctan3)=((x+3)/(1-3x)) Please note this is just the first-level solution ... strictly speaking, you still have to find the (maximal) domain of the solution, maybe discuss some other issues ...

Looking for something else?

Not the answer you are looking for? Search for more explanations.