Estimate the wavelength (in nm) of such a proton moving at 2.81x10^8 m/s (mass of a proton = 1.673x10^-27 kg).

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Estimate the wavelength (in nm) of such a proton moving at 2.81x10^8 m/s (mass of a proton = 1.673x10^-27 kg).

Chemistry
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

To look at a particle as a wave, we need to us the de Broglie equation...\[\lambda = \frac{h}{mv}\]Where... Lambda is the wavelength. h is Planck's constant m is the mass of the particle, and v is the velocity of the particle This is easy enough. It's already solved for the value we want to find, so we can just plug in some numbers...\[\lambda = \frac{6.626*10^{-34}J*s}{(1.673*10^{-27}kg)(2.81*10^{8}m*s^{-1})}\] All of the units cancel appropriately to give us the wavelength in meters...\[\lambda = 1.41m*10^{-15}*(\frac{1*10^9nm}{1m})=1.41*10^{-6}nm\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question