Find the sin and cos of theta. (diagram)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the sin and cos of theta. (diagram)

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1328328468937:dw|
Remember that sin is side opposite/hypotenuse and cos = side adjacent/hypotenuse. \[\sin \theta = \frac{12}{13}\]
\[\cos \theta=\frac{-5}{13}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

theta doesn't equal 360 minus the angle between 5 and 13, just 180 minus that angle... is it still that simple?
So yes. After you find your reference angle, subtract it from 180 to get the angle measured counterclockwise from the positive x axis.
how do you find the reference angle?
depends on which quadrant you are in: Let A be the angle, R be reference angle Quad 1: R =A Quad 2: R = 180-A Quad 3: R = A-180 Quad 4: R = 360 -A

Not the answer you are looking for?

Search for more explanations.

Ask your own question