anonymous
  • anonymous
The figure here shows triangle AOC inscribed in the region cut from the parabola y=x^2 by the line y=a^2. Find the limit of the ratio of the area of the triangle to the area of the parabolic region as a approaches zero.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
dumbcow
  • dumbcow
i find the ratio to be a constant 3/4
dumbcow
  • dumbcow
Area of triangle = (1/2)*2a*a^2 = a^3 Area of parabolic region = \[2\int\limits_{0}^{a}(a^{2}-x^{2}) dx = \frac{4a^{3}}{3}\] Ratio: \[\frac{a^{3}}{\frac{4a^{3}}{3}} = \frac{3}{4}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Right, thank you very much.
dumbcow
  • dumbcow
your welcome

Looking for something else?

Not the answer you are looking for? Search for more explanations.