anonymous
  • anonymous
Integration and volume question: find the volume obtained when the shaded region is rotated through 360 degrees about the y axis.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1328364703100:dw| equation of curve: y= (x+1)^0.5 equation of line: y=x+1 intersection points: (0,1) (-1,0)
dumbcow
  • dumbcow
\[V = \pi \int\limits_{0}^{1}(y^{2}-1)^{2} - (y-1)^{2} dy\]
anonymous
  • anonymous
how did you get that?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Revolution solid formule.
anonymous
  • anonymous
http://tutorial.math.lamar.edu/Classes/CalcI/VolumeWithRings.aspx
dumbcow
  • dumbcow
outer radius is x-value of y=sqrt(x+1) --> x = y^2 -1 inner radius is x_value of y = x+1 --> x = y-1
dumbcow
  • dumbcow
horizontal cross-sections are rings with outer and inner radius

Looking for something else?

Not the answer you are looking for? Search for more explanations.