anonymous
  • anonymous
Express the ratio of the area of the larger circle to the area of the smaller circle in simplest radical form. Larger circle: radius of 2 + √3, smaller circle's radius: 2-√3.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1328377447770:dw|
anonymous
  • anonymous
The answer is supposed to be: 97 + 56√3
dumbcow
  • dumbcow
\[=\frac{\pi(2+\sqrt{3})^{2}}{\pi(2-\sqrt{3})^{2}} = \frac{7+4\sqrt{3}}{7-4\sqrt{3}}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I approve
dumbcow
  • dumbcow
then you have to multiply by conjugate to get radical out of denominator
anonymous
  • anonymous
Why is it 7 + 4√3?

Looking for something else?

Not the answer you are looking for? Search for more explanations.