anonymous
  • anonymous
Guys, Prove \(x^4 + ax^3 + 2x^2 + bx + 1 = 0\) has real solutions if \(a^2 + b^2 \le 8\).
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Sorry, \(a^2 + b^2 \ge 8\)
Mr.Math
  • Mr.Math
Do you mean that ALL solutions are real if that condition is satisfied?
anonymous
  • anonymous
yeah!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Mr.Math
  • Mr.Math
I can't yet get a proof, but this might help. \(x^4+ax^3+2x^2+bx+1=(x^2+1)^2+ax^3+bx=0\) \(\implies (x^2+1)^2=-(ax^3+bx).\) For real solutions we have to have \(ax^3+bx \le 0\).
anonymous
  • anonymous
I did the same
anonymous
  • anonymous
but I couldn't get ahead of this
asnaseer
  • asnaseer
given:\[x^4+ax^3+2x^2+bx+1=0\tag{a}\]if this has all real solutions, then it can be written as:\[(x-r_1)(x-r_2)(x-r_3)(x-r_4)=0\]where \(r_1,r_2,r_3,r_4\) are the real solutions. If we expand this we get:\[\begin{align} x^4-(r_1+r_2+r_3+r_4)x^3+(r_1r_2+r_1r_3+r_1r_4+r_2r_3+r_2r_4+r_3r_4)x^2\\ -(r_1r_2r_3+r_1r_2r_4+r_1r_3r_4+r_2r_3r_4)x+r_1r_2r_3r_4=0\tag{b} \end{align}\]comparing equations (a) and (b) we can deduce the following:\[\begin{align} r_1r_2r_3r_4&=1\tag{c}\\ r_1r_2+r_1r_3+r_1r_4+r_2r_3+r_2r_4+r_3r_4&=2\tag{d}\\ r_1r_2r_3+r_1r_2r_4+r_1r_3r_4+r_2r_3r_4&=-b\tag{e}\\ r_1+r_2+r_3+r_4&=a\tag{f} \end{align}\]squaring (f) gives us:\[\begin{align} a^2&=r_1^2+r_2^2+r_3^2+r_4^2+2(r_1r_2+r_1r_3+r_1r_4+r_2r_3+r_2r_4+r_3r_4)\\ &=r_1^2+r_2^2+r_3^2+r_4^2+2(2)\qquad\text{[using (d)]}\\ &=r_1^2+r_2^2+r_3^2+r_4^2+4\tag{g} \end{align}\]squaring (e) gives us:\[\begin{align} b^2&=(r_1r_2r_3)^2+(r_1r_2r_4)^2+(r_1r_3r_4)^2+(r_2r_3r_4)^2+\\ &\qquad2(r_1^2r_2^2r_3r_4+r_1^2r_2r_3^2r_4+r_1^2r_2r_3r_4^2+r_1r_2^2r_3^2r_4+r_1r_2r_3^2r_4^2)\\ &=(r_1r_2r_3)^2+(r_1r_2r_4)^2+(r_1r_3r_4)^2+(r_2r_3r_4)^2+\\ &\qquad2r_1r_2r_3r_4(r_1r_2+r_1r_3+r_1r_4+r_2r_3+r_2r_4+r_3r_4)\\ &=(r_1r_2r_3)^2+(r_1r_2r_4)^2+(r_1r_3r_4)^2+(r_2r_3r_4)^2+\\ &\qquad2r_1r_2r_3r_4(2)\qquad\text{[using (d)]}\\ &=(r_1r_2r_3)^2+(r_1r_2r_4)^2+(r_1r_3r_4)^2+(r_2r_3r_4)^2+\\ &\qquad2*1(2)\qquad\text{[using (c)]}\\ &=(r_1r_2r_3)^2+(r_1r_2r_4)^2+(r_1r_3r_4)^2+(r_2r_3r_4)^2+4\tag{h}\\ \end{align}\]adding (g) and (h) gives us:\[a^2+b^2=r_1^2+r_2^2+r_3^2+r_4^2+(r_1r_2r_3)^2+(r_1r_2r_4)^2+(r_1r_3r_4)^2+(r_2r_3r_4)^2+8\]since the non-constant terms are all squares, their minimum value must be 0, therefore:\[a^2+b^2\ge8\]
asnaseer
  • asnaseer
equation got cut-off at the right hand side! adding (g) and (h) gives us:\[a^2+b^2=r_1^2+r_2^2+r_3^2+r_4^2+\]\[\hspace{2cm}(r_1r_2r_3)^2+(r_1r_2r_4)^2+(r_1r_3r_4)^2+(r_2r_3r_4)^2+8\]
anonymous
  • anonymous
asnaseer wow your latex!
asnaseer
  • asnaseer
:)
Mr.Math
  • Mr.Math
Very nice asnaseer! :-)

Looking for something else?

Not the answer you are looking for? Search for more explanations.