Challenge: \[f(x)=\sum_{n=1}^{infinty}\sin(\frac{2x}{3^n})\sin(\frac{x}{3^n})\] find f(x) (independent of x) also evaluate the sum of the solutions of the equations f(x)=0 lying in the interval (0,629).

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Challenge: \[f(x)=\sum_{n=1}^{infinty}\sin(\frac{2x}{3^n})\sin(\frac{x}{3^n})\] find f(x) (independent of x) also evaluate the sum of the solutions of the equations f(x)=0 lying in the interval (0,629).

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I didn't make this up I have hundreds of such problems
What book do you have for these?
It is more of uncomplied collection

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Any ideas
sin2x = 2cosx*sinx But it doesn't seem to work
We shall use transformation formula
cosc + cosd?
sinxsin2x=1/2 (cosx-cos3x)
Oh yeah cosc-cosd, Sorry
You got it!
NotSObright you're so bright! I think we have it now
I know summation formula for cos of angles in AP not GP
\[f(x) = \cos \frac{x}{3^n} - \cos x, n \to \infty \implies \frac{x}{3^n} \to 0 \implies \cos0 \to 1 \] \[f(x) = 1-\cos{x}\]
I would like to answer more of such problems
Thanka man
f(x)=(1−cosx)/2
yeah cant forget that 2
Look at the new thread

Not the answer you are looking for?

Search for more explanations.

Ask your own question