Searched google for a half hour and couldn't find anything that helpful. The best I could find was http://www.math.jhu.edu/~vlorman/32.pdf Given vectors a and b, do teh equations x CROSS a = b and x DOT a = ||a|| determine a unique vector x? Argue both geometrically and analytically. Any help is appreciated.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Searched google for a half hour and couldn't find anything that helpful. The best I could find was http://www.math.jhu.edu/~vlorman/32.pdf Given vectors a and b, do teh equations x CROSS a = b and x DOT a = ||a|| determine a unique vector x? Argue both geometrically and analytically. Any help is appreciated.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

  • phi
i think we can use x dot a = |x| |a| cos A and | x cross a | = |x| |a| sin A to show we get x to a sign (i.e. two possible directions)
  • phi
if vectors a and b are not orthogonal, then there is no x such that x cross a = b (because b must be orthogonal to both x and a) if a and b are not zero and orthogonal, we get a unique x x will form an angle A= atan( |b|/|a|) with vector a, and have length= |a| tan A

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question