• anonymous
Searched google for a half hour and couldn't find anything that helpful. The best I could find was Given vectors a and b, do teh equations x CROSS a = b and x DOT a = ||a|| determine a unique vector x? Argue both geometrically and analytically. Any help is appreciated.
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • schrodinger
I got my questions answered at in under 10 minutes. Go to now for free help!
  • phi
i think we can use x dot a = |x| |a| cos A and | x cross a | = |x| |a| sin A to show we get x to a sign (i.e. two possible directions)
  • phi
if vectors a and b are not orthogonal, then there is no x such that x cross a = b (because b must be orthogonal to both x and a) if a and b are not zero and orthogonal, we get a unique x x will form an angle A= atan( |b|/|a|) with vector a, and have length= |a| tan A

Looking for something else?

Not the answer you are looking for? Search for more explanations.