Find all solutions of the following linear congruence. \(3x\equiv2\mod7\) First of all, we notice that \((3,7)=1\). Therefore, we will only have \(1\) solution. We now need to obtain a solution of the linear, diophantine equation \(3x-7y=2\). The Euclidean algorithm gives: \(7=3\cdot2+1\), \(3=1\cdot3+0\). Hence, \(7\cdot1-3\cdot2=1\) and \(7\cdot2-3\cdot4=2\). Therefore, a particular solution to the diophantine equation is \(x_0=-4\), \(y_0=-2\) and all solutions of the linear congruences are given by \(x\equiv-4\equiv3\mod7\). Am I right?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find all solutions of the following linear congruence. \(3x\equiv2\mod7\) First of all, we notice that \((3,7)=1\). Therefore, we will only have \(1\) solution. We now need to obtain a solution of the linear, diophantine equation \(3x-7y=2\). The Euclidean algorithm gives: \(7=3\cdot2+1\), \(3=1\cdot3+0\). Hence, \(7\cdot1-3\cdot2=1\) and \(7\cdot2-3\cdot4=2\). Therefore, a particular solution to the diophantine equation is \(x_0=-4\), \(y_0=-2\) and all solutions of the linear congruences are given by \(x\equiv-4\equiv3\mod7\). Am I right?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I have a way but you might now like it
not*
i am sure this is right, but i would write the following \[3x\equiv2\mod7\] \[3x\equiv9\mod7\] \[x\equiv3\mod7\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[3x \equiv 2 \mod 7 =>3x=2+7k\] k=0, there is no integer x k=1, x=3 k=2, there is no integer x k=3, there is no integer x k=4, x=10 k=5, there is no integer x k=6, there is no integer x k=7, x=17 so on... so we have x=...,3,10,17,17+7,(17+7)+7, and so on...
that is the usual gimmick. keep adding until you can divide to solve the congruence
x=3+7i where i is an integer
which is what satellite said
in two lines lol
shhh... don't make fun of my inefficient way ;)
speed kills

Not the answer you are looking for?

Search for more explanations.

Ask your own question