anonymous
  • anonymous
5i/(2+3i)^2 Write the quotient in standard form
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
this is a repeat yes?
Mertsj
  • Mertsj
I don't know;.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Mertsj
  • Mertsj
smarty pants
anonymous
  • anonymous
maybe it was not clear, but you have to square the denominator to see what it actually is, then multiply top and bottom by the conjugate of the denominator to see what you get.
Mertsj
  • Mertsj
What difference does it make?
Mertsj
  • Mertsj
|dw:1328415021324:dw|
anonymous
  • anonymous
\[\frac{5i}{(2+3i)^2}\] \[=\frac{5i}{4+12i+9i^2}\] \[=\frac{5i}{4-9+12i}=\frac{5i}{12i-5}\] \[=(\frac{5i}{12i-5})(\frac{12i+5}{12i+5})\] \[=\frac{60i^2+25i}{144i^2-25}=\frac{-60+25i}{-144-25}=\frac{-60+25i}{-169}=\frac{60-25i}{169}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.