anonymous
  • anonymous
Hey guys, Our professor gave us this bonus problem at the end of our take-home exam. I have spent all day trying to solve it, but I have not gotten very far. Could anyone help me? "Show that every non-trivial zero of the function\[\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s},\]where \(s\in\mathbb{C}\), has real part \(1/2\)."
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[\huge {\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s},}\] Just for enlarge your Equatio
jhonyy9
  • jhonyy9
i think is the same like Riemann hypothesis or ???

Looking for something else?

Not the answer you are looking for? Search for more explanations.