anonymous
  • anonymous
An object is thrown vertically upward and has a speed of 10 m/s when it reaches three fifths of its maximum height above the launch point. Determine its maximum height.
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
i used the 2ad = V(inital)^2 - V^2 formula H = (1/5), a = -9.8, V^2 = 10m/s since intial V is 0 so i had 2(-9.8)d = 0^2 - 10^2 -19.6d = -100 => d= -100/-19.6 => d=5.10m after this i multiplied it by the reciprocal of 1/5 and got 25.5m i'm stuck on where i went wrong?
ash2326
  • ash2326
We know \[v^2-u^2=2as\] v= final velocity at max height is 0 u = u ( initial velocity) s= h (max height ) a=-9.8 m/s^2 so we get \[-u^2=-2*9.8*h.............equation 1\] now at s= 3/5 h v= 10 m/s u= u m/s so from this we get \[10^2-u^2=-2*9.8*\frac{3}{5}*h..........equation 2\] subtract equation 1 from 2 we get \[10^2=-2*9.8*\frac{3}{5}h+2*9.8*h\] on simplifying we get \[100=2*9.8*\frac{1}{5}*h\] so \[h=\frac{100*5}{2*9.8}\] \[h = 25.51 m\] so max height is 25.51 meters
ash2326
  • ash2326
you are correct galactic

Looking for something else?

Not the answer you are looking for? Search for more explanations.