Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Give the formulae for the transformation of the coordinates of a vector. Plssssssss

I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer


To see the expert answer you'll need to create a free account at Brainly

sorry, I have no idea
Ha k. Cn any1 else help me.?
transformations into what?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

are you talking about linear transformations: R2 -> R3 ??
does this help?
It's a part of a question. Let me type the whole question.
Pls see the attachment for the full question.
Part of forming a basis is that the vectors u,v,w have to be linearly independent. That means that each of the vectors can't be a linear combination of the others. So, let's look at the new vectors (let's call them x,y,z) x = u+v y = -u+w z = u+v+w If you take any of x,y and z, and linearly combine them, can you end up with another one of x, y or z (hint: you can't)? If not, x, y and z form a basis. As for the second part of the question, are we talking affine transformation? Those are most easily expressed in a matrix, which reduces the transform to a vector-matrix multiply (which itself is just a series of dot products). I'm not sure what formulae are being looked for here, because it depends on the transform asked for. If it's just a rotation, it's relatively simple - you can just build a matrix like so: \[\left[\begin{matrix}\cos \beta \cos \gamma & -\cos \alpha \sin \gamma + \sin \alpha \sin \beta \cos \gamma & \sin \alpha \sin \gamma + \cos \alpha \sin \beta \cos \gamma\\ \cos \beta \sin \gamma & \cos \alpha \cos \gamma + \sin \alpha \sin \beta \sin \gamma & -\sin \alpha \cos \gamma + \cos \alpha \sin \beta \sin \gamma \\ -\sin \beta & \sin \alpha \cos \beta & \cos \alpha \cos \beta\end{matrix}\right]\] where \[\alpha, \beta, \gamma\] are Euler angles (rotations about the X, Y, and Z axes of your coordinate system), respectively. A multiplication of a 3-vector with such a matrix would yield a 3-vector rotated by the three angles. It follows, that for example to get the transformed x-component of the vector v [xyz], you would calculate \[x' = x*cos \beta cos \gamma + y*cos \beta sin \gamma + z*-sin \beta \] And do similarly for the y and z components with the second and third column of the matrix. Someone please double check my math here, it's been a while since I've actually built a rotation matrix by hand :P
Thanx a lot for this great help.

Not the answer you are looking for?

Search for more explanations.

Ask your own question