Fool's problem of the day, If \( m \) and \(n\) are positive integers that satisfy \(3m^2 − 8n^2 + 3m^2n^2 = 2008\), then find the product \(m^2n\). Genre: algebra-precalculus Rating: Easy

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Fool's problem of the day, If \( m \) and \(n\) are positive integers that satisfy \(3m^2 − 8n^2 + 3m^2n^2 = 2008\), then find the product \(m^2n\). Genre: algebra-precalculus Rating: Easy

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I have a feeling that we should make use of the fact that \(2008=2^3*251\)
I don't know if this helps, but we can rewrite this as:\[3m^2(1+n^2)-2^3n^2=2^3*251\]
therefore:\[3m^2(1+n^2)=2^3(251+n^2)\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Good point asnaseer.
therefore:\[m^2n=\frac{2^3n(251+n^2)}{3(1+n^2)}\]
this must be an integer, therefore \(3(1+n^2)\) must divide evenly into \(2^3n(251+n^2)\)
You are in the right track, divisibility the way :)
since \(2^3\) is not divisible by 3, then this implies \(n(251+n^2)\) must be divisible by 3. therefore either n is divisible by 3 and/or \(251+n^2\) is divisible by 3.
is it 112? (n = 7), makes (251+n^2) =300 which is nice and makes (1+n^2)=50 also nice :D
I'm trying to /prove/ the result. I am sure we can use brute force to find /a/ solution, but that doesn't prove it's the /only/ solution. :)
ah, nvm them, I don't know how to prove it :D
Yes 112 is the answer :)
you win gogind :D
win by brute force, sounds like cheating :D
haha, prove it now :D
need fooood - I'll be back soon :)
sure :)
Good thinking gogind.
OK - the furthest I can get with this is as follows:\[\begin{align} 3m^2(1+n^2)-8n^2&=2008\tag{a}\\ m^2n&=\frac{8n(251+n^2)}{3(1+n^2)}\tag{b} \end{align}\]equation (b) implies \(n(251+n^2)\) must be a multiple of 3. 1. lets try n being a multiple of 3.\[\begin{align} n&=3a\\ 3m^2(1+9a^2)-72a^2&=2008\qquad\text{(substituting n=3a into equation(a))}\\ \therefore 3(m^2(1+9a^2)-24a^2)&=2008\\ \qquad&\text{reject since 2008 is not a multiple of 3} \end{align}\] 2. lets try \(251+n^2\) being a multiple of 3.\[\begin{align} 251+n^2&=3a\\ \therefore n^2&=3a-251\tag{c} \end{align}\] Now we can substitute equation (c) into equation (a) to get:\[\begin{align} 3m^2(1+3a-251)-8(3a-251)&=2008\\ 3m^2(3a-250)-24a+\cancel{2008}&=\cancel{2008}\\ 3m^2(3a-250)&=24a\\ \therefore m^2&=\frac{8a}{3a-250}\tag{d} \end{align}\] Equation (d) implies \(a\ge84\). It also shows \(m^2\rightarrow\frac{8}{3}\) as \(a\rightarrow\infty\). From here I could only use trial and error to determine that the only solution to (c) and (d) is a=100, which gives m=4, n=7. Therefore \(m^2n=112\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question