LaddiusMaximus
  • LaddiusMaximus
determine if this limit exists, if so evaluate it. lim h-->0 (2/(4-h)^2-2/16)/h how do you determine if it exists?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\lim_{h\rightarrow 0}\frac{2}{(4-h)^2}-\frac{2}{16}\]?
anonymous
  • anonymous
you actually have to do the subtraction to get \[\frac{32-2(4-h)^2}{16(4-h)^2}\] and yes, there is another h in the denominator, we can put it in later
anonymous
  • anonymous
now multiply out in the numerator and get \[\frac{32-2(16-8h+h^2)}{16(4-h)^2}\] \[\frac{32-32+16h-2h^2}{16(4-h)^2}\] \[\frac{8h-h^2}{8(4-h)^2}\] now lets divide by h and get \[\frac{8-h}{8(4-h)^2}\]and finally replace h by zero to get your answer

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
you get \[\frac{8-0}{8(4-0)^2}=\frac{8}{8\times 16}=\frac{1}{16}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.