anonymous
  • anonymous
The sum of the squares of three consecutive positive integers is 2030. What is the middle integer?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
(n)^2+(n+1)^2+(n+2)^2=2030
UnkleRhaukus
  • UnkleRhaukus
26
anonymous
  • anonymous
And how did you come up with 26?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
n^2+n^2+2n+1+n^2+4n+4=2030 3n^2+6n+5=2030 3n^2+6n-2025=0 n^2+2n-675=0 (n-25)(n+27)=0 n=25, n=-27 Since it is positive the first number is 25. The second once is equal to 26 :)
UnkleRhaukus
  • UnkleRhaukus
well i used a guess and check method, i started with \[24^2+25^2+26^2=1877\] and then tried \[25^2+26^2+27^2=2030\] which turned out right.

Looking for something else?

Not the answer you are looking for? Search for more explanations.