anonymous
  • anonymous
Rotate the region bounded by the given curves about the given line and find the volume resulting solid. x=1+y^2 and the xaxis from x=1 to x=5 about y=3
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
dumbcow
  • dumbcow
|dw:1328507665468:dw| we need the function in terms of x, solving for y y = sqrt(x-1) outer radius(R) = 3 inner radius(r) = 3-sqrt(x-1) \[V = \pi \int\limits_{1}^{5}3^{2} -(3-\sqrt{x-1})^{2} dx\]
anonymous
  • anonymous
Is this using disk or shell method?
dumbcow
  • dumbcow
disk or washer method

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Do you know how to do it using shell?
dumbcow
  • dumbcow
each vertical cross-section is a ring with outer circle and inner circle
dumbcow
  • dumbcow
i can try...i primarily use the disk method though hold on
anonymous
  • anonymous
Thanks
dumbcow
  • dumbcow
ok radius = 3-y height = 5-(y^2 +1) = 4-y^2 \[V = 2\pi \int\limits_{0}^{2}(3-y)(4-y^{2}) dy\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.