anonymous
  • anonymous
the length of a rectangle box is one inch greater than its width. the height is three times the length. the diagonal box exceeds the height by one inch. Find the volume of the box.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Mertsj
  • Mertsj
|dw:1328539986535:dw|
Mertsj
  • Mertsj
\[AB=\sqrt{w^2+(w+1)^2}=\sqrt{2w^2+2w+1)}\]
Mertsj
  • Mertsj
\[AC=\sqrt{2w^2+2w+1+9(w+1)^2}=\sqrt{11w^2+20w+10}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Mertsj
  • Mertsj
Now AC is one more than the height which is 3w+3 so AC = 3w+4
Mertsj
  • Mertsj
\[\sqrt{11w^2+20w+10}=3w+4\]
Mertsj
  • Mertsj
Let's square both sides.
anonymous
  • anonymous
now im really confused lol
Mertsj
  • Mertsj
What about?
anonymous
  • anonymous
uhhh everything lol
anonymous
  • anonymous
like idk what the main answer is lol
Mertsj
  • Mertsj
That might be because we haven't found the answer yet. We have to find w based on the information they gave us. Then we will be able to find the dimensions of the box and then the volume.
Mertsj
  • Mertsj
As i said, let's square both sides of the equation.
Mertsj
  • Mertsj
\[11w^2+20w+10=9w^2+24w+16\]
anonymous
  • anonymous
is 16 the square root ?
Mertsj
  • Mertsj
\[2w^2-4w-6=0\]
Mertsj
  • Mertsj
Divide by 2
Mertsj
  • Mertsj
\[w^2-2w-3=0\]
Mertsj
  • Mertsj
Factor
Mertsj
  • Mertsj
\[(w-3)(w+1)=0\]
Mertsj
  • Mertsj
\[w=3 or w=-1\]
Mertsj
  • Mertsj
Discard -1 since the width cannot be negative. So w = 3. That means : |dw:1328541450706:dw|
Mertsj
  • Mertsj
so the box is 3 by 4 by 12 and the volume is 3(4)(12) or 144 cubic inches

Looking for something else?

Not the answer you are looking for? Search for more explanations.